Contribution from the Institute of Inorganic Chemistry Technische Hochschule, Getridemarkt 9, A 1060, Vienna, Austria

The Interaction of Trifluoroiodomethane with Donor Molecules

P. M. Spaziante and V. Gutmann

Received October 13, 1970

The enthalpies of interaction between trifluoroiodomethane and various electron pair donor molecules D are increased by increasing donicity of D. The plot of the chemical shifts of the ¹⁹F NMR spectra of CF₃I at inini: dilution in D vs. donicities of D gives a straight line.

Introduction

Perfluoro organic halides form at low temperatures 1: 1 adducts with tertiary amines.' Such adducts dissociate reversibly into unchanged starting materials at higher temperatures: for example the trifluoroiodomethane-trimethylamine adduct is formed at-83°C, at this temperature the dissociation pressure being 3.5 Torr. the reversible nature of this interaction suggests an electron pair donor-acceptor reaction involving the N atom of the amine and the iodine atom of the halide.

This interpretation is supported by the results of an infrared study of mixtures of $Me₃N$ and $CF₃I$ in the gas phase at room temperature.² The absorption band at 77 cm^{-1} was attributed to N - - - I intermolecular band in $CF₃I-MMe₃$. There is also evidence for the interaction of $CF₃I$ and 2,4.6-collidine in solution.³

We wish now to report a study of the interaction between CF₃I and various electron pair donor molecules.

Experimental Section

Standard vacuum line techniques were used. CF₃I was prepared from CF₃COOAg and iodine.⁴ The various donors were purified by standard techniques?

Vapor pressures were measured with a mercury isoteniscope. The donor solvent was weighed and introduced in a small pyrex finger of a mercury isoteniscope (\approx 3 ml volume), the finger was cooled by liquid air and an appropriate amount of $CF₃I$ (5 to 10 mmoles) was condensed into it.

Results

The dissociation pressure of the $D: CF_3I = 2: 1$ mix-

-
-

(1) N.F. Cheetham and A.D.E. Pullin, *Chem. Comm.*, 418 (1965).

(2) N.F. Cheetham and A.D.E. Pullin, *Chem. Comm.*, 233 (1967).

(3) A.N. Larsen and A.L. Allred, *J. Phys. Chem.*, 69, 2400 (1965).

(4) R.N. Haszeldine,

tures were measured at different temperatures below 0°C, so that the vapor pressure of the free donor solvent could be neglected. The reaction

$$
2D_{(1)} + ICF_{3(1)} \longrightarrow D_2ICF_{3(1)}; \ \Delta H_1; \ K_1
$$

is regarded as algebrical combination of the reactions:

$$
CF_3I_{(1)} \longrightarrow CF_3I_{(g)}; \Delta H_2; K_2
$$

and

$$
CF3I(g) + 2D \underset{\longrightarrow}{\longleftarrow} D2ICF3(1); \Delta H3; K3
$$

From $1/K_3 = \frac{PCF_3V - 2P(F_1)}{a_{D_2ICF_3(1)}}$ with a_D and $a_{D_2ICF_3}$ constant and the van't Hoff equation- $\frac{d \ln K_3}{dT} = \frac{\Delta H_3}{RT^2}$ one obtains $-\frac{dln p_{FC_3I}}{dT} = \frac{\Delta H_3}{RT^2}$

Straight lines are obtained in the plot of log $p_{CF₃1}$ **vs.** l/T which are represented by the equations

$$
\log\ p = \frac{A}{T} + B
$$

The coefficients A and B are reported in Table I together with the ΔH_1 values for D-CF₃I interactions. The ΔH_1 values are plotted vs. the donicity of D in Figure 1.

The position of the ¹⁹F NMR resonance signal of $CF₃I$ in the pure liquid state is found at 5.15 ppm relative to CCl_3F as external standard. When CF_3I is dissolved in a solvent, a different 19F chemical shift is observed, which depends both on the nature of D and on the concentration of $CF₃I$ as it is shown in Figure 2 and 3 respectively.

Spaziante, Gutmann | Interaction of Trifluoroiodomethane with Donor Molecules

Conclusions

Quantitative calorimetric measurements of the interactions between D and CF₃I were not attempted because of the difficulties of handling the very volatile trifluoroiodomethane. The ΔH_1 values for the interactions were obtained from vapor pressure data, as reported in the preceeding section. With weak donor molecules no substantial interactions occur. The plots of ΔH_1 vs. the donicity of the donor solvent^{5,6} show that with stronger donors the ΔH_3 -values rise sharply with increasing donicity of D and for DMA, DMSO, DEF, DEA, Py, and HMPA the relationship between ΔH_3 and DN is such that nearly a straight line is obtained (Figure 1).

Figure 1. AH values vs. the donicity of D: l\$Dichloroethangure λ . ΔH values vs. the domicity of D : 1,2-Dichloroethane (1), Nitrobenzene (2), Propanediol-1,2-carbonate (3), N,N- $\sum_{i=1}^{\infty}$ intermide (4), Dimethyl sulphoxide (5), N,N-Diethylormamide (6), N,N-Diethyla

Figure 2. Γ -initial chemical shifts at infinite

:;

 $\frac{2}{3}$ ²⁰

lo methyla 17 Acetone $\frac{18}{12}$

19 Diethylether zi Frimethyl phosphat 22 Tributhyl phosphate
23 Dimethylformamide

I etrany arofurane Tributhyl phosphate D imethyliormamide $\sum_{n=1}^{\infty}$

N,N-Dietylacetamide 29 Hexamethylphosphoramide

Acetone
Ethnology Binylacetat
Diethylethe

z Dimethyl sulpoxide zo N_,N-Dietylformam

1 pure CFII 16 Methvlacetate $\frac{1}{2}$ pure $\frac{1}{2}$.

- $\frac{1}{2}$ Diecnice than e
- a Suiphpryl chlori
1 Thionyl ch
- t Anionyl chloride
- 6 Acelyl chloride
- 6 Benzoyl chloride
7 Nitrobenzene
- Nitrobenzene
- 8 Acetic Anhydride
- 9 Benzonitrile
10 Acetonitrile
- 11 Proposed is 112
- 11 Propanedion-1,
- 12 Benzyl cyanide
- 13 iso-Butyronitrile
- 14 Propionitrile
15 Ethylene carbonate
-

The stronger interaction of $CF₃I$ with D of increasing donicity is also demonstrated by the evaluation of the NMR data. At very diluited solution of CF3I in a donor solvent two effects appear to contribute to the actual chemical shift, namely

(a) the change in bulk diamagnetic susceptibility of the solvent,

(b) the extent of interaction between D and $CF₃I$.

rigure 5. $T - N/MK$ chemical shifts of the system D-ICF₃ referred to CCI₃F as external reference at different molar ratios D-CF₃I.

The magnitude of the shifts observed when CF,I is dissolved in a donor solvent D cannot be accounted $\frac{1}{2}$ dissolved in a donor solvent D cannot be accounted. or by considering only the burk susceptionity difference che between

 $\frac{2}{3} \pi (\chi_{\text{CP}_3\text{I}} - \chi_{\text{D}})$

is found smaller than ± 1 ppm in this particular case. $T_{\rm{th}}$ correlation between 19 F chemical shifts and

the correlation between " r chemical shifts and the electronegativities of the atoms or groups to which fluorine is bonded⁸ leads to a shift of the ¹⁹F resonational is bonded reads to a similar the "F resolance signal at inglier lield, when Γ is attached to less electronegative atoms or groups. Thus an increase in electron density at the fluorine atoms produces a shift towards higher field.⁸

The coordination of D at the iodine atom of $CF₃I$ Fire coordination of D at the found atom of Cr_3I s expected to fead to

$$
D+I-CF_3 \rightarrow D\rightarrow IC-F_3
$$

and this is in accordance with the observed shifts of the 19F resonance signal to higher field.

(6) V. Gutmann and E. Wychera, *Inorg. Nucl. Chem. Letters*, 2,
257 (1966)
(7) J.A. Pople, W.G. Schneider, and H.J. Bernstein, High-resolution
Nuclear Magnetic Resonance, McGraw-Hills Book Company, Inc., New
York (1959).
(

It may further be expected that a relationship exists between the ¹⁹F chemical shift of CF₃I and the donicity of D. Figure 2 reveals that fhere is a linear relationship between the donicity of D and the chemical shift.

Figure 3 shows that for a molar ratio $D: CF_3I =$ 2: **1** the chemical shift has reached a value, approaching that at infinite dilution provided that D is a strong donor possibly due to the interaction:

$$
2D + ICF_3 \leftrightharpoons D_2ICF_3
$$

With a solvent of low donicity a higher $D: CF₃I$ ratio is required to obtain the final value for the chemical shift, since D_2 . CF₃I adducts are appreciably dissociated into D and $CF₃I$.

The results are unequivocal proof that in this particular system the formation of the charge transfer complex is a function of the donor properties of D as expected by the donicity and not, as has previously been assumed by the ionization potential of the donor molecule.⁹ It may be expected that the relationship

(9) G. Briegleb, Elektronen - Donator - Acceptor Komplexe, Sprin-

will be valid for the formation of other charge-transfer complexes of the $n-\sigma$ -type, where no change in the oxidation numbers of the atoms in the species of the system are involved. $10,11$

For strong $D-ICF_3$ interaction, ionization is expected to occur. In the systems under investigation no ionization was however observed as long as no light was admitted. Only in the presence of light the D- $CF₃I$ systems in nitrobenzene gave conducting solutions for $D = DMSO$, Py, or HMPA and the conductivities were found to increase with time. Electrolysis of these conductive solutions gave iodine at the cathode, indicating the presence of iodine in the $+1$ oxidation state in solution. The nature of the ionic species in the solutions has not been established.

Acknowledgments. Thanks are due to the Italian « Consiglio Nazionale delle Ricerche » for a NATO Fellowship to P.M.S. and to the Fond zur Förderung der wissenschaftlichen Forschung in Osterreich for the support of the work.

(10) V. Gutmann and U. Mayer, *Rev. Chim. Min.*, in the press.
(11) V. Gutmann, Chemische Funktionslehre, Springer Verlag, Wien,